

C.so Savona 22,1029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com

G&B Fissaggi UK
G&B Fissaggi Vertretung Deutschland

FR

p. 1/7

rev. 05/2022

G&B Fissaggi Ibérica G&B Fissaggi Benelux

G&B Fissaggi Benelux G&B Fissaggi France

FICHE TECHNIQUE

Gebofix PRO VE-SF SISMIK cheville chimique à base de vinylester sans styrène

Certifications

ETA 19/0699 Certification selon EAD 330499-01-0601 (ex ETAG 001-5) pour utilisation sur le béton non fissuré et fissuré

(Option 1) avec tige filetée ; classe de performance C1 pour actions sismiques avec tige filetée de M10 à M24 ; classe de performance C2 pour actions sismiques avec tige filetée M12, M16, M20. Utilisation sur le

béton non fissuré avec fers à béton

ETA 16/0599 Certification par fers à béton selon ETAG 001-5 pour connexions rapportées de barres d'armatures dans des

structures existantes, conception selon Eurocode 2 (EN 1992-1-1)

ETA 16/0919 Certification selon 330076-00-0604 (ex ETAG 029) pour utilisation sur la maçonnerie pleine ou creuse avec tige

filetée et tamis en plastique

Certification de résistance au feu Répond aux exigences LEED® QEI 4.1

Classe d'émission A+ en polluants volatils dans l'air intérieur

Pour utilisation en contact avec eau potable

Supports

utilisation certifié	utilisation spécifique	adaptable
béton non fissuré	pierre compacte	béton cellulaire
béton fissuré	briques pleines, semi-pleines et creuses	béton léger
briques pleines	bloc creux béton (parpaing)	
briques creuses	bois	

Formats

art.	format	mélangeur	pistolet
CC13	410 ml	2 M17	CP01, CP11, CP15, CP16
CC14	350 ml	2 M17	CP05
CC32	300 ml	1 M17	CP07, CP17

Conditions d'utilisation

Béton sec ou humide

Béton avec trous inondés (barres de M8 à M16 et de Ø8 à Ø16) Maçonnerie sèche, installation dans des structures sèches ou humides

Température de la cartouche : de +5 à +20 °C Température d'installation : de -10 à +30 °C

Température de service : I de -40 à +40 °C (température maximale de courte terme +40 °C ; de long terme +24 °C)

II de -40 à +80 °C (température maximale de courte terme +80 °C; de long terme +50 °C)

Expiration de la date de fabrication: 18 mois pour les cartouches de 410 ml et 350 ml, 12 mois pour les cartouches de 300 ml

(températures de stockage entre +5 et +25 °C)

Temps et températures de pose

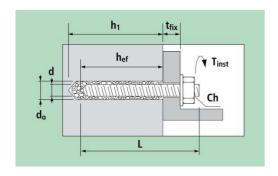
température de le support			application de la charge supports mouillé		
-10 ÷ +4 °C *	20 min *	24 h *	48 h *		
+5 ÷ +9 °C	10 min	145 min	290 min		
+10 ÷ +19 °C	6 min	85 min	170 min		
+20 ÷ +29 °C	4 min	50 min	100 min		
+30 °C	4 min	40 min	80 min		

^{*} utilisation non couverte par la certification

La température de la cartouche doit être comprise entre +5 et +20 °C

C.so Savona 22,1029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com

G&B Fissaggi UK G&B Fissaggi Vertretung Deutschland


G&B Fissaggi Ibérica

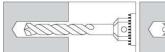
G&B Fissaggi Benelux G&B Fissaggi France

FICHE TECHNIQUE

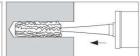
Gebofix PRO VE-SF SISMIK cheville chimique à base de vinylester sans styrène

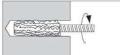
FR rev. 05/2022 p. 2/7

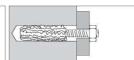
 $\begin{array}{lll} d & = & \text{diamètre de la tige} \\ L & = & \text{longueur de la tige} \\ t_{\text{fix}} & = & \text{épaisseur fixable} \\ d_0 & = & \text{diamètre du trou} \\ h_1 & = & \text{profondeur min. du trou} \\ h_{\text{nom}} & = & \text{profondeur d'insertion} \\ \end{array}$


h_{ef} = profondeur d'ancrage effective

T_{inst} = couple de serrage


utilisation sans tamis: $h_{ef} = h_1 = h_{nom}$


• Utilisation dans le béton non fissuré et fissuré avec tige filetée


Installation

Caractéristiques de pose et d'installation

tige		M8	M10	M12	M16	M20	M24	M27	M30
diamètre du trou	d ₀ (mm)	10	12	14	18	22	26	30	35
profondour du trou	h _{ef,min} (mm)	64	80	96	128	160	192	216	240
profondeur du trou	h _{ef,max} (mm)	160	200	240	320	400	480	540	600
distance minimales entre axes	s _{min} (mm)	35	40	50	65	80	96	110	120
distance minimales au bord	c _{min} (mm)	35	40	50	65	80	96	110	120
					h _{ef}	/ 2			
					h _{ef}	/ 2			
épaisseur minimale du support	h _{min} (mm)	h _{ef} + 30 ≥ 100			h _{ef} + 2d ₀				
couple de serrage	T _{inst} (Nm)	10	20	40	80	150	200	240	275

Données de chargement

Pour installation dans béton sec ou humide et température de service I (température minimum -40 °C, température maximale de courte terme +40 °C, de long terme +24 °C)

Valable pour une ancre seule et loin du bord, sur un élément en béton épais de classe C20/25 avec éparse renforcement

Tige filetée dans béton non fissuré

Résistance caractéristique de la résine (kN)

profondeur d'insertion standard

tige		M8	M10	M12	M16	M20	M24	M27	M30
profondeur d'insertion	h _{ef} (mm)	80	90	110	128	170	210	240	270
traction	$N_{Rk,p}$ (kN)	20,1	25,4	35,2	51,5	80,1	110,8	112,0	127,2

Résistance de calcul (kN)

profondeur d'insertion standard, pour tiges filetées en acier classe 5.8 et 8.8

!	, i								
tige		M8	M10	M12	M16	M20	M24	M27	M30
profondeur d'insertion	h _{ef} (mm)	80	90	110	128	170	210	240	270
traction	N _{Rd} (kN)	11,2	14,1	19,6	28,6	44,5	61,6	53,3	60,6
cisaillement	V _{Rd} (kN)	7,3 11.7	11,6 18.6	16,9 27,0	31,4 50.2	49,0 78.4	70,6 113.0	91,8 146.9	112,2 179.5

C.so Savona 22,1029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com

G&B Fissaggi UK G&B Fissaggi Vertretung Deutschland G&B Fissaggi Ibérica G&B Fissaggi Benelux

G&B Fissaggi France

FICHE TECHNIQUE

FR rev. 05/2022 p. 3/7

Gebofix PRO VE-SF SISMIK cheville chimique à base de vinylester sans styrène

Charge recommandée (kN)

profondeur d'insertion standard, pour tiges filetées en acier classe 5.8 et 8.8

tige		M8	M10	M12	M16	M20	M24	M27	M30
profondeur d'insertion	h _{ef} (mm)	80	90	110	128	170	210	240	270
traction	N _{rec} (kN)	8,0	10,1	14,0	20,4	31,8	44,0	38,1	43,3
cisaillement	V _{rec} (kN)	5,2 8,4	8,3 13,3	12,0 19,3	22,4 35,9	35,0 56,0	50,4 80,7	65,6 104,9	80,1 128,2

1 kN ≈ 100 kg

rupture de l'acier classe 5.8 - rupture de l'acier classe 8.8

Tige filetée dans béton fissuré

Résistance caractéristique de la résine (kN)

profondeur d'insertion standard

tige		M10	M12	M16	M20	M24
profondeur d'insertion	h _{ef} (mm)	90	110	128	170	210
traction	$N_{Rk,p}$ (kN)	14,1	20,7	32,2	53,4	79,2

Résistance de calcul (kN)

profondeur d'insertion standard, pour tiges filetées en acier classe 5.8 et 8.8

tige		M10	M12	M16	M20	M24
profondeur d'insertion	h _{ef} (mm)	90	110	128	170	210
traction	N _{Rd} (kN)	7,9	11,5	17,9	29,7	44,0
cisaillement	V _{Rd} (kN)	11,6 18,6	16,9 27,0	31,4 42,9	49,0 71,2	70,6 105,6

Charge recommandée (kN)

profondeur d'insertion standard, pour tiges filetées en acier classe 5.8 et 8.8

tige		M10	M12	M16	M20	M24
profondeur d'insertion	h _{ef} (mm)	90	110	128	170	210
traction	N _{rec} (kN)	5,6	8,2	12,8	21,2	31,4
cisaillement	V _{rec} (kN)	8,3 13,3	12,0 19,3	22,4 30,6	35,0 50,9	50,4 75,4

1 kN ≈ 100 kg

rupture de l'acier classe 5.8 - rupture de l'acier classe 8.8

o Tige filetée sous actions sismiques, classe de performance C1

Résistance caractéristique de la résine (kN)

profondeur d'insertion standard

tige		M10	M12	M16	M20	M24
profondeur d'insertion	h _{ef} (mm)	90	110	128	170	210
traction	N _{Rk,p} (kN)	8,8	15,3	23,8	39,5	60,2

Résistance de calcul (kN)

profondeur d'insertion standard, pour tiges filetées en acier classe 5.8 et 8.8

p. c. c	or o								
tige		M10	M12	M16	M20	M24			
profondeur d'insertion	h _{ef} (mm)	90	110	128	170	210			
traction	N _{Rd} (kN)	4,9	8,5	13,2	22,0	33,4			
cisaillement	V _{Rd} (kN)	4,1 5.0	5,9 8.7	11,0 13.5	17,2 22.4	24,7 34.1			

C.so Savona 22,1029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com

G&B Fissaggi UK G&B Fissaggi Vertretung Deutschland G&B Fissaggi Ibérica

G19382 G&B Fissaggi Benelux aggi.com G&B Fissaggi France

FICHE TECHNIQUE

Gebofix PRO VE-SF SISMIK cheville chimique à base de vinylester sans styrène

FR rev. 05/2022 p. 4/7

Charge recommandée (kN)

profondeur d'insertion standard, pour tiges filetées en acier classe 5.8 et 8.8

tige		M10	M12	M16	M20	M24
profondeur d'insertion	h _{ef} (mm)	90	110	128	170	210
traction	N _{rec} (kN)	3,5	6,1	9,4	15,7	23,9
cisaillement	V _{rec} (kN)	2,9 3,5	4,2 6,2	7,9 9,6	12,3 16,0	17,7 24,4

1 kN ≈ 100 kg

rupture de l'acier classe 5.8 - rupture de l'acier classe 8.8

Tige filetée sous actions sismiques, classe de performance C2

Résistance caractéristique de la résine (kN)

profondeur d'insertion standard

tige	M12	M16	M20	
profondeur d'insertion	h _{ef} (mm)	110	128	170
traction	$N_{Rk,p}$ (kN)	4,6	8,4	16,0

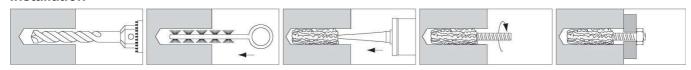
Résistance de calcul (kN)

profondeur d'insertion standard, pour tiges filetées en acier classe 5.8 et 8.8

tige	M12	M16	M20	
profondeur d'insertion	h _{ef} (mm)	110	128	170
traction	N _{Rd} (kN)	2,5	4,6	8,9
cisaillement	V _{Rd} (kN)	2,6	4,7	9,1

Charge recommandée (kN)

profondeur d'insertion standard, pour tiges filetées en acier classe 5.8 et 8.8


tige		M12	M16	M20
profondeur d'insertion	h _{ef} (mm)	110	128	170
traction	N _{rec} (kN)	1,8	3,3	6,4
cisaillement	V _{rec} (kN)	1,8	3,4	6,5

1 kN ≈ 100 kg

rupture de l'acier classe 5.8 - rupture de l'acier classe 8.8

• Utilisation dans le béton non fissuré avec et fers à béton (utilisés comme ancres)

Installation

Caractéristiques de pose et d'installation

fer		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
diamètre du trou	d ₀ (mm)	12	14	16	20	25	32	40
and and are destroy	h _{ef,min} (mm)	64	80	96	128	160	200	256
profondeur du trou	h _{ef,max} (mm)	160	200	240	320	400	500	640
distance minimales entre axes	s _{min} (mm)	35	40	50	6	80	100	130
distance minimales au bord	c _{min} (mm)	35	40	50	6	80	100	130
épaisseur minimale du support	h _{min} (mm)	h _{ef} + 30 ≥ 100			h _{ef} + 2d ₀			

C.so Savona 22,1029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com G&B Fissaggi UK G&B Fissaggi Vertretung Deutschland

FR

p. 5/7

G&B Fissaggi Ibérica G&B Fissaggi Benelux G&B Fissaggi France

FICHE TECHNIQUE rev. 05/2022 Gebofix PRO VE-SF SISMIK cheville chimique à base de vinylester sans styrène

Données de chargement

Pour installation dans béton sec ou humide et température de service I (température minimum -40 °C, température maximale de courte terme +40 °C, de long terme +24 °C)

Valable pour une ancre seule et loin du bord, sur un élément en béton épais de classe C20/25 avec éparse renforcement.

Fers à béton dans béton non fissuré

Résistance caractéristique de la résine (kN)

profondeur d'insertion standard

fer		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
profondeur d'insertion	h _{ef} (mm)	80	90	110	145	170	210	300
traction	$N_{Rk,p}$ (kN)	17,1	25,4	37,3	58,3	85,5	131,9	150,8

Résistance de calcul (kN)

profondeur d'insertion standard, pour fers à béton avec f_{uk} = 550 N/mm²

fer		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
profondeur d'insertion	h _{ef} (mm)	80	90	110	145	170	210	300
traction	N _{Rd} (kN)	9,5	14,1	20,7	32,4	47,5	73,3	83,8
cisaillement	V _{Rd} (kN)	9,2	14,4	20,7	36,9	57,6	90,0	147,4

Charge recommandée (kN)

profondeur d'insertion standard, pour fers à béton avec $f_{uk} = 550 \text{ N/mm}^2$

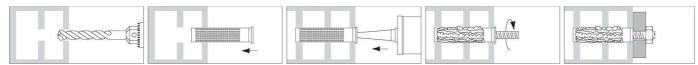
fer		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
profondeur d'insertion	h _{ef} (mm)	80	90	110	145	170	210	300
traction	N _{rec} (kN)	6,8	10,1	14,8	23,1	33,9	52,4	59,8
cisaillement	V _{rec} (kN)	6,6	10,3	14,8	26,3	41,1	64,3	105,3

1 kN ≈ 100 kg rupture de l'acier

Les données de chargement dérivant des valeurs certifiées de l'Évaluation Technique Européenne ETA 19/0699. La résistance caractéristique N_{Rk} concerne uniquement la résistance de la résine à la rupture par extraction et par cône de béton. Les résistances de calcul N_{Rd} et V_{Rd} concernent tous les modes de rupture et comprennent les facteurs partiels de sécurité sur les résistances. Les charges recommandées N_{rec} e V_{rec} comprennent le facteur de sécurité additionnelle 1,4.

Pour le calcul des ancres avec des distances réduites, près du bord ou pour la fixation sur béton avec résistance supérieure, épaisseur réduite ou renforcement dense se référer à l'ETA 19/0699 ou à la Déclaration des Performances DPGEB1034 et utiliser le méthode de calcul décrite dans EN 1992-4. De même, pour les ancrages installés dans des trous inondés et pour différentes températures de travail (II, entre -40 et +80 °C) se référer à l'ETA. On peut également calculer et vérifier les fixations faites avec Gebofix PRO VE-SF SISMIK au moyen du programme de calcul G&B Calculation Program disponible sur le site www.gebfissaggi.com.

C.so Savona 22,1029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com G&B Fissaggi UK G&B Fissaggi Vertretung Deutschland


FR

G&B Fissaggi Ibérica G&B Fissaggi Benelux G&B Fissaggi France

FICHE TECHNIQUE rev. 05/2022 Gebofix PRO VE-SF SISMIK cheville chimique à base de vinylester sans styrène p. 6/7

Utilisation dans maçonnerie

Installation

Supports

		classification	long./larg./haut. (mm)	min. densité ρ (kg/dm³)	min. résistance f _b (N/mm ²)
brique	brique pleine en terre cuite	MZ-NF	240/115/71	1,9	20
pleine	brique pleine silico-calcaire	KSV-NF	240/115/71	1,8	25
	brique creuse en terre cuite Porotherm	P+W	373/250/238	0,9	12
brique creuse	brique creuse en terre cuite Hueco Doble	-	245/110/88	0,74	2,5
orcusc	brique creuse silico-calcaire	KSL-R-12-1,2-16DF	239/248/239	1,3	15

Il est possible d'utiliser d'autres types de briques à la suite d'essais de chantier selon l'annexe B de l'ETAG 029.

Caractéristiques de pose et d'installation

tige		M8	M10	M12
tamis		BR16x85	BR16x85	BR20x85
diamètre du trou	d ₀ (mm)	16	16	16
profondeur du trou	h₁ (mm)	90	90	90
profondeur d'ancrage effective	h _{ef} (mm)	85	85	85
couple de serrage	T _{inst} (Nm)	2	2	2

tige			M8	M10	M12
	espacement parallèle à joint horizontal	s _{cr II} = s _{min II} mm	255	255	255
brique pleine en terre cuite	espacement perpendiculaire à joint horizontal	$s_{cr}^{\perp} = s_{min}^{\perp} mm$	255	255	255
torro odito	distance au bord	$c_{cr} = c_{min} mm$	128	128	128
	espacement parallèle à joint horizontal	S _{cr II} = S _{min II} mm	255	255	255
brique pleine silico-calcaire	espacement perpendiculaire à joint horizontal	$s_{cr} \perp = s_{min} \perp mm$	255	255	255
omoo carcano	distance au bord	c _{cr} = c _{min} mm	128	128	128
brique creuse en	espacement parallèle à joint horizontal	S _{cr II} = S _{min II} mm	373	373	373
terre cuite	espacement perpendiculaire à joint horizontal	$s_{cr} \perp = s_{min} \perp mm$	238	238	238
Porotherm	distance au bord	$c_{cr} = c_{min} mm$	100	100	120
brique creuse en	espacement parallèle à joint horizontal	S _{cr II} = S _{min II} mm	245	245	245
terre cuite Hueco	espacement perpendiculaire à joint horizontal	$s_{cr} \perp = s_{min} \perp mm$	110	110	110
Doble	distance au bord	c _{cr} = c _{min} mm	100	100	120
	espacement parallèle à joint horizontal	S _{cr II} = S _{min II} mm	239	239	239
brique creuse silico-calcaire	espacement perpendiculaire à joint horizontal	$s_{cr} \perp = s_{min} \perp mm$	248	248	248
omee caroune	distance au bord	c _{cr} = c _{min} mm	100	100	120

C.so Savona 22,1029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com

G&B Fissaggi UK G&B Fissaggi Vertretung Deutschland G&B Fissaggi Ibérica G&B Fissaggi Benelux

www.gebfissaggi.com - info@gebfissaggi.com G&B Fissaggi France

FICHE TECHNIQUE

FR
rev. 05/2022
p. 7/7

Données de chargement

Pour installation et utilisation dans maçonnerie sèche et température de service II (température minimum -40 °C, température maximale de courte terme +80 °C, de long terme +50 °C) Valable pour une ancre seule et loin du bord

Résistance caractéristique sous traction et cisaillement (kN)

tige	M8	M10	M12	
brique pleine en terre cuite	$N_{Rk} = V_{Rk}$	3,0	3,0	3,0
brique pleine silico-calcaire	$N_{Rk} = V_{Rk}$	3,0	3,0	3,0
brique creuse en terre cuite Porotherm	$N_{Rk} = V_{Rk}$	2,0	2,0	2,5
brique creuse en terre cuite Hueco Doble	$N_{Rk} = V_{Rk}$	0,9	1,2	1,5
brique creuse silico-calcaire	$N_{Rk} = V_{Rk}$	2,0	2,0	2,5

Résistance de calcul sous traction et cisaillement (kN)

tige		M8	M10	M12
brique pleine en terre cuite	$N_{Rd} = V_{Rd}$	1,2	1,2	1,2
brique pleine silico-calcaire	$N_{Rd} = V_{Rd}$	1,2	1,2	1,2
brique creuse en terre cuite Porotherm	$N_{Rd} = V_{Rd}$	0,80	0,80	1,0
brique creuse en terre cuite Hueco Doble	$N_{Rd} = V_{Rd}$	0,36	0,48	0,60
brique creuse silico-calcaire	$N_{Rd} = V_{Rd}$	0,80	0,80	1,0

Charge recommandée sous traction et cisaillement (kN)

tige		M8	M10	M12	
brique pleine en terre cuite	$N_{rec} = V_{rec}$	0,86	0,86	0,86	
brique pleine silico-calcaire	$N_{rec} = V_{rec}$	0,86	0,86	0,86	
brique creuse en terre cuite Porotherm	$N_{rec} = V_{rec}$	0,57	0,57	0,71	
brique creuse en terre cuite Hueco Doble	$N_{rec} = V_{rec}$	0,26	0,34	0,43	
brique creuse silico-calcaire	$N_{rec} = V_{rec}$	0,57	0,57	0,71	

¹ kN ≈ 100 kg

Les résistances caractéristiques N_{Rk} et V_{Rk} dérivant des valeurs certifiées de l'Évaluation Technique Européenne ETA 16/0919. Les résistances de calcul N_{Rd} et V_{Rd} comprennent le facteur partiel de sécurité sur les résistances 2,5. Les charges recommandées N_{rec} et V_{rec} comprennent le facteur de sécurité additionnelle 1,4.

Pour le calcul des ancres avec des distances réduites ou près du bord, ou des groupes de deux ou plus ancres et pour la résistance de la barre sous cisaillement avec bras de levier se référer à l'ETA 16/0919 ou à la Déclaration des Performances DPGEB1034 et utiliser la méthode de calcul B décrite dans le *Technical Report* TR 054 (délivré par EOTA).